\qquad Exam Seat No:

C.U.SHAH UNIVERSITY

 Summer Examination-2020
Subject Name: Fundamental of Electrical Engineering

Subject Code: 4TE01FEE1
Semester : 1 Date : 28/02/2020

Branch: B.Tech (All)

Time : 02:30 To 05:30 Marks : 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

1) Unit of resistivity is \qquad
A) ohm-meter
B) ohm/meter
C) meter/ohm
D) $\mathrm{ohm} /$ meter 2
2) Which one of the below material has highest resistance?
A) Conductors
B) Insulators
C) Electrolytes
D) Semiconductor
3) If the distance between the plate of capacitor incerases, its capacitance \qquad
A) Increases
B) Remains constant
C) Decreases
D) None of the above
4) When four capacitors of $1 \mu \mathrm{~F}$ are connected in parallel, the resultant capacitance will be \qquad
A) $1 \mu \mathrm{~F}$
B) $0.25 \mu \mathrm{~F}$
C) $0.50 \mu \mathrm{~F}$
D) $4 \mu \mathrm{~F}$
5) The energy stored in magnetic field of inductor is given by the expression \qquad
A) $0.5(\mathrm{Li})^{2}$
B) $0.5 \mathrm{Li}^{2}$
C) Li
D) $2 \mathrm{Li}^{2}$
6) The unit of permeability is \qquad .
A) Henry/Metre
B) Weber
C) Henry
D) Metre/ Henry
7) Flux of a magnetic circuit is analogous to \qquad
A) Electric Field Intensity
B) Current density
C) Electric current
D) Resistance
8) Three resistance of 10Ω are connected in star fashion, for equivalent delta connection, resistance of each side will be \qquad
A) 30Ω
B) 3.33Ω
C) 10Ω
D) 20Ω
9) In case of sinusoidal voltage if $V_{r m s}$ is the rms voltage and V_{m} is the maximum voltage, then $V_{r m s}=$ \qquad
A) V_{m}
B) $\frac{V_{m}}{2}$
C) $\frac{3 V_{m}}{2}$
D) $\frac{V_{m}}{\sqrt{2}}$
10) For a purely inductive AC circuit, inductor current leads the supply voltage by 90 degree angle.
A) True
B) False
11) At higher frequencies, the value of inductive reactance \qquad
A) Decreases
B) Remains same C) Increases
D) Depends on applied voltage
12) In a series R-L-C circuit, at resonance current is maximum.
A) True
B) False
13) A transformer operates \qquad
A) On DC supply only
B) On AC supply only
C) Both AC and DC supply
14) A transformer transforms \qquad
A) Voltage and Current
B) Voltage
C) Current
D) Frequency

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(a) Explain the effect of temperature on resistance for the given materials.
i) Pure Metals
ii) Alloys
iii) Insulators and Semiconductors
(b) Derive an expression for ' n ' number of resistances connected in parallel. Give the advantages of parallel connection.

Q-3 Attempt all questions

(a) State Faraday's first law and second law electromagnetic induction. Derive the equation of induced emf $e=N \frac{d \phi}{d t}$. Where $\mathrm{N}=$ Number of turns in a coil, $\phi=$ flux in the coil.
(b) Derive the equation of flux $\phi=\frac{N I}{S}$ for a magnetic circuit. Where, $I=$ Current through the magnetic circuit.
$N=$ Number of turns in a magnetic circuit.
$S=$ Reluctance of the magnetic circuit.

Q-4 Attempt all questions

(a) Explain the action of a capacitor and derive the equation for the capacitance $\boldsymbol{C}=\frac{\boldsymbol{Q}}{\boldsymbol{V}}$.
(b) Derive an expression for the equivalent capacitance for a number of capacitors connected in

Series ii) Parallel

Q-5 Attempt all questions

(a) Obtain an expression for the equivalent delta network resistance for a given star network.
(b) Derive the relationship between the voltage and current for purely resistive AC circuit. Draw the waveforms and phasor for voltage and current.

Q-6 Attempt all questions

(a) Draw the power triangle. From the power triangle define
i) Active power \quad ii) Reactive power \quad iii) Apparent power \quad iv) Power factor
(b) Explain the following sinusoidal function terminology.
i) Amplitude
ii) Angular Frequency
iii) Time period

Q-7

Q-8
Attempt all questions
(a) Explain the theory of an ideal transformer. Explain the construction of core type transformer.
(b) Derive the emf equation $e=4.44 f N \phi_{m}$ for a single phase transformer Where f=07 frequency of supply, $\mathrm{N}=$ number of turns either primary or secondary side, $\phi_{m}=$ maximum flux in the core.

